Refine your search:     
Report No.
 - 
Search Results: Records 1-2 displayed on this page of 2
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

Compilation of Kinetic Data for Geochemical Calculations

Arthur, R. C,*; Savage, D.*; Sasamoto, Hiroshi; Shibata, Masahiro; Yui, Mikazu

JNC TN8400 2000-005, 61 Pages, 2000/01

JNC-TN8400-2000-005.pdf:2.83MB

Kinetic data, including rate constants, reaction orders and activation energies, are compiled for 34 hydrolysis reactions involving feldspars, sheet silicates, zeolites, oxides, pyroxenes and amphiboles, and for similar reactions involving calcite and pyrite. The data are compatible with a rate law consistent with surface reaction control and transition-state theoly, which is incorporated in the geochemieal software package EQ3/6 and GWB. Kinetic data for the reactions noted above are strictly compatible with the transition-state rate law only under far-from-equilibrium conditions. It is possiblethat the data are conceptually consistent with this rate law under both far-from-equilibrium and near-to-equilibrium conditions, but this should be confirmed whenever possible through analysis of original experimental results, Due to limitations in the availability of kinetic data for mineral-water reactions, and in order to simplify evaluations of geochemical models of groundwater evolution, it is convenient to assume local-equilibrium in such models whenever possible. To assess whether this assumption is reasonable, a modeling approach accounting for coupled fluid flow and water-rock interaction is described that can be used to estimate spatial and temporal scale of local equiliblium. The approach is demonstrated for conditions involving groundwater flow in fractures at JNC's Kamaishi in-situ tests site, and is also used to estimate the travel time necessary for oxidizing surface waters to migrate to the level of a HLW repository in crystalline rock. The question of whether local equilibrium is a reasonable assumption must be addressed using an appropriate modeling approach. To be appropriate for conditions at the Kamaishi site using the modeling approach noted above, the fracture fill must closely approximate a porous medium, groundwater flow must be purely advective and diffusion of solutes across the fracture-host rock boundary must not occur. Moreover, the ...

JAEA Reports

Groundwater Evolution Modeling for the Second Progress Performance Assessment (PA) Report

Yui, Mikazu; Sasamoto, Hiroshi; Randolph C Arthu*

JNC TN8400 99-030, 201 Pages, 1999/07

JNC-TN8400-99-030.pdf:7.85MB

According to the Japanese program for research and development of high level radioactive waste (HLW) disposal defined by Atomic Energy Commission (AEC), the second progress report (i.e., H-12 report) for performance assessment (PA) of HLW disposal is to be published by the Japan Nuclear Cycle Development Institute (JNC) and submitted to the Japanese government before the year 2,000 (AEC, 1997). This report presents the establishment of generic groundwater chemical compositions for the PA supporting the H-12 report. The following five hypothetical groundwaters are categorized for PA based on the results of the first progress report (i.e., H-3 report) and binaly statistical analyses of the screened groundwater dataset: (1)FRHP(Fresh-Reducing-High-pH) groundwater (2)FRLP(Fresh-Reducing-Low-pH) groundwater (3)SRHP(Saline-Reducing-High-pH) groundwater (4)SRLP(Saline-Reducing-Low-pH) groundwater (5)MRNP(Mixing-Reducing-Neutral-pH) groundwater. In order to define representative groundwater compositions for the PA for the H-12 report, JNC has established the representativeness of the above five hypothetical groundwaters by considering the results of multivariate statistical analyses, data reliability, evidence for geochemical controls on groundwater chemistry and exclusion criteria for potential repository sites in Japan. As a result, the following hypothetical reference groundwaters are selected for the performance assessment analysis in H-12 report, respectively: (1)Reference Case groundwater: FRHP groundwater, and (2)Alternative Geological Environment Case groundwater: SRHP groundwater. In addition, JNC has consulted with overseas experts on the concepts used in groundwater evolution modeling. This modeling effort has focussed on simulating equilibrium water-rock interactions to predict groundwater compositions resulting from reactions between initial water compositions and rock mineral assemblages. These discussions have centered on recommendations for developing ...

2 (Records 1-2 displayed on this page)
  • 1